Get Free Ebook Quantum Theory of Solids, by Charles Kittel
Downloading and install the book Quantum Theory Of Solids, By Charles Kittel in this site listings can offer you much more benefits. It will reveal you the most effective book collections and finished collections. Many books can be located in this site. So, this is not only this Quantum Theory Of Solids, By Charles Kittel Nevertheless, this publication is described check out due to the fact that it is a motivating book to give you much more opportunity to get encounters and ideas. This is straightforward, review the soft documents of the book Quantum Theory Of Solids, By Charles Kittel and you get it.
Quantum Theory of Solids, by Charles Kittel
Get Free Ebook Quantum Theory of Solids, by Charles Kittel
Why must select the headache one if there is simple? Get the profit by purchasing the book Quantum Theory Of Solids, By Charles Kittel below. You will certainly obtain different method making a deal as well as get guide Quantum Theory Of Solids, By Charles Kittel As known, nowadays. Soft file of the books Quantum Theory Of Solids, By Charles Kittel come to be incredibly popular among the visitors. Are you one of them? And also right here, we are offering you the brand-new compilation of ours, the Quantum Theory Of Solids, By Charles Kittel.
If you really want actually get guide Quantum Theory Of Solids, By Charles Kittel to refer currently, you need to follow this page always. Why? Remember that you need the Quantum Theory Of Solids, By Charles Kittel source that will provide you right expectation, do not you? By seeing this web site, you have begun to make new deal to consistently be updated. It is the first thing you could start to obtain all profit from remaining in a site with this Quantum Theory Of Solids, By Charles Kittel as well as various other compilations.
From currently, finding the finished website that sells the completed publications will be numerous, however we are the relied on site to see. Quantum Theory Of Solids, By Charles Kittel with simple link, easy download, as well as finished book collections become our better services to obtain. You can find as well as utilize the perks of picking this Quantum Theory Of Solids, By Charles Kittel as every little thing you do. Life is constantly creating as well as you need some brand-new book Quantum Theory Of Solids, By Charles Kittel to be referral consistently.
If you still require much more publications Quantum Theory Of Solids, By Charles Kittel as referrals, going to browse the title as well as motif in this website is readily available. You will certainly locate more whole lots publications Quantum Theory Of Solids, By Charles Kittel in numerous self-controls. You can likewise when feasible to read guide that is currently downloaded. Open it and save Quantum Theory Of Solids, By Charles Kittel in your disk or gadget. It will ease you any place you need guide soft file to read. This Quantum Theory Of Solids, By Charles Kittel soft documents to read can be referral for everyone to enhance the skill as well as capability.
A modern presentation of theoretical solid state physics that builds directly upon Kittel's Introduction to Solid State Physics. Treats phonon, electron, and magnon fields, culminating in the BCS theory of superconductivity. Considers Fermi surfaces and electron wave functions and develops the group theoretical description of Brillouin zones. Applies correlation functions to time-dependent effects in solids, with an introduction to Green's functions. With 110 problems, the text is well-suited for the classroom or for self-instruction.
- Sales Rank: #644940 in Books
- Published on: 1987-04-02
- Ingredients: Example Ingredients
- Original language: English
- Number of items: 1
- Dimensions: 9.09" h x .94" w x 6.04" l, 1.70 pounds
- Binding: Paperback
- 528 pages
From the Back Cover
Quantum Theory of Solids is a modern presentation of theoretical solid state physics it builds directly on the same author?s Introduction to Solid State Physics and is planned as a one year graduate course for experimental and theoretical physicists it is well-suited for self study because the text contains 110 problems. The first part of the book treats phonon, electron, and magnon fields, culminating in the BCS theory of superconductivity. The second part considers Fermi surfaces and electron wave functions, and develops the group theoretical description of Brillouin zones. The third part applies correlation functions to time-dependent effects in solids, with an introduction to Green?s functions.
About the Author
About the author...Charles Kittel taught solid state physics at the University of California Berkeley from 1951 to 1978. Earlier he had been a member of the solid state physics group at Bell Laboratories. His undergraduate work in physics was a M.I.T. and at the Cavendish Laboratory of Cambridge University. His PhD was from the University of Wisconsin. He has been awarded the Oliver Buckley Prize for Solid State Physics and the Oersted Medal of the American Association of Physics Teachers He is a member of the National Academy of Science and of the American Academy of Arts and Sciences. He is the author of a widely used introductory book on solid state physics.
Most helpful customer reviews
14 of 15 people found the following review helpful.
Still a good book
By Dr. Lee D. Carlson
It is too bad this book is out of print, for it gives a good introduction to the quantum theory as applied to condensed matter, despite the many advances that have taken place since the date of publication, such as high-temperature superconductivity, the fractional quantum Hall effect, and nanoscale physics. Therefore, if a copy can be found, it is still worth perusing and having on one's shelf. I only read the first 8 chapters of the book, so my review will be confined to them.
After a brief introduction to the mathematics needed in the book, the author begins in chapter 2 with a treatment of acoustic phonons, which arise from the canonical quantization of the transverse motion of a continuous elastic line under tension. This object is handled using the Lagrangian formalism, and after finding the Hamiltonian density, employing a canonical transformation, the (bosonic) creation and annihilation operators are found: phonon excitations. Both longitudinal and transverse modes are shown to exist in general. Bogoliubov transformations are then used to show how phonons may arise in a system of weakly interacting particles. The author then derives the expression for the velocity of "second sound" in a phonon gas. Experimental evidence for second sound in liquid helium was known at the time of publication, but since then evidence has accumulated in Bose gases and in certain types of crystals, such as KTaO and SrTiO. The phenomenon of second sound has also been of considerable interest in the study of nonlinear optical phenomena in smectic liquid crystals. The author also discusses the occurence of van Hove singularities in the phonon frequency distribution function, and points to their connection with Morse theory.
In chapter 3 the author concentrates his attention on plasmons, which arises from longitudinal excitations in an electron gas, and optical phonons in ionic crystals. He then extends the latter analysis to include the interaction of optical phonons with photons, which he also treats using quantum field theory, giving what he calls a quantum theory of a classical dielectric.
The theory of spin waves, or "magnons" is discussed in chapter 4, wherein the author first treats ferromagnetic magnons via the consideration of the Hamiltonian consisting of nearest-neighbor exchange and Zeeman contributions. The dispersion relation for both optical and acoustical magnons in a spin system forming a Bravais lattice is derived and compared with experiment for magnetite. The author then treats antiferromagnetic magnons and discusses the zero-point sublattice magnetization and the heat capacity of antiferromagnets. He then returns to ferromagnetic magnons but from a more macroscopic point of view, treating the magnetization as a macroscopic field, rather than dealing with individual spins. Lastly, he considers the excitation of ferromagnetic magnons by parallel pumping and the temperature dependence of effective exchange.
After a short review of the Hartree-Fock approximation in chapter 5, the author considers the all-important electron gas in chapter 6. The electron gas, particularly in two dimensions, has been the subject of great interest since this book was first published, not only because of its technological importance, but also its role in the quantum Hall effect and the fractional quantum Hall effect. Although density functional and renormalization group methods are the current favored ones for studying the electron gas, readers can still gain much from the reading of the chapter. The author concentrates his attention on the approximate calculation of the correlation energy of the degenerate electron gas, particularly at high density. To do this he uses the self-consistent field approach and he exploits the frequency and wavevector dielectric constant as a tool for studying many-body interactions. Several bread-and-butter topics in quantum many-body theory appear in this chapter, such as the linked cluster expansion, which appear in other more complicated (relativistic) contexts, such as high energy physics.
The author introduces polarons in chapter 7 as a consequence of any deformation of the ideal periodic lattice of positive ion cores on the motion of conduction electrons, and notes that even the zero-point motion of phonons effects this motion. The interaction of an electron with the lattice results in a "lattice polarization field" around the electron, and the resulting composite particle is the polaron, which, as expected, has a larger effective mass then the electron in an unperturbed lattice. The electron-phonon interaction results in resistivity, results in attenuation of ultrasonic waves in metals, and results in some cases to an attractive interaction between electrons, this being one of the precursors of superconductivity. The problem of electron-phonon interaction in metals has been the subject of much study in attempts to give quantum field theory a rigorous mathematical foundation, particularly via the study of the "jellium model".
Chapter 8 is very important, and its content reveals again the age of the book. The phenomenon of superconductivity, and its description by the Bardeen-Cooper-Schrieffer theory, is known as one of the triumphs of the quantum theory of solids. Of course, when this book was published, superconducting materials at high temperature, were not known. The author though gives a detailed overview of the BCS theory, starting with the Hamiltonian for the electrons, phonons, and their first-order interactions (the strength measured by a certain real constant D). Using a canonical transformation, the author reduces the Hamiltonian to one with no off-diagonal terms of order D. This results in an expression for an electron-electron interaction which can be attractive for excitation energies in a certain range (involving the Debye energy). Keeping only this interaction in the Hamiltonian, for wave vectors that satisfy this range constraint, the author studies the properties of bound electron pairs, and shows how they bring about superconductivity. He also outlines an alternative solution to the BCS equation, using what he calls the equation-of-motion method. More modern treatments of superconductivity employ the use of Higgs fields and the renormalization group, these approaches shedding light on whether one can indeed view superconductivity as a "macroscopic manifestation of quantum physics".
4 of 4 people found the following review helpful.
Dense reference for the advanced student
By Manoj Rajagopalan
The book mostly consists of theorems formalizing the mathematical foundations for study in solid-state physics. It best serves as a reference together with another book that is more pedagogical, for example Ashcroft & Mermin or the introductory book on solid state physics by the same author (Charles Kittel).
That said, this is a great, concise reference for anyone creating models and simulations because it bridges instructive texts and books on pure mathematical methods.
4 of 6 people found the following review helpful.
Good Overall Review of Advanced Solid State Theory
By Eric Nowlin
A good book in addition to another introductory text. I covers the subject manner in an orderly fashion and reviews the theory in an intricate fashion. However, the mathematical notation is not what one would expect from other Solid State texts however the same conventions are used from his introductory book on Solid State Physics. An excellent investment for those interested.
Quantum Theory of Solids, by Charles Kittel PDF
Quantum Theory of Solids, by Charles Kittel EPub
Quantum Theory of Solids, by Charles Kittel Doc
Quantum Theory of Solids, by Charles Kittel iBooks
Quantum Theory of Solids, by Charles Kittel rtf
Quantum Theory of Solids, by Charles Kittel Mobipocket
Quantum Theory of Solids, by Charles Kittel Kindle
Tidak ada komentar:
Posting Komentar